
Stress-Testing Point Cloud Registration on Automotive
LiDAR

Amnon Drory Raja Giryes

Tel-Aviv University

Shai Avidan

Abstract

Rigid Point Cloud Registration (PCR) algorithms aim to estimate the 6-DOF
relative motion between two point clouds, which is important in various fields,
including autonomous driving. Recent years have seen a significant improvement
in global PCR algorithms, i.e. algorithms that can handle a large relative motion.
This has been demonstrated in various scenarios, including indoor scenes, but
has only been minimally tested in the Automotive setting, where point clouds are
produced by vehicle-mounted LiDAR sensors. In this work, we aim to answer
questions that are important for automotive applications, including: which of the
new algorithms is the most accurate, and which is fastest? How transferable are
deep-learning approaches, e.g. what happens when you train a network with data
from Boston, and run it in a vehicle in Singapore? How small can the overlap
between point clouds be before the algorithms start to deteriorate? To what extent
are the algorithms rotation invariant? Our results are at times surprising. When
comparing robust parameter estimation methods for registration, we find that the
fastest and most accurate is not one of the newest approaches. Instead, it is a
modern variant of the well known RANSAC technique. We also suggest a new
outlier filtering method, Grid-Prioritized Filtering (GPF), to further improve it.
An additional contribution of this work is an algorithm for selecting challenging
sets of frame-pairs from automotive LiDAR datasets. This enables meaningful
benchmarking in the Automotive LiDAR setting, and can also improve training for
learning algorithms.
We share our code and registration sets.1

1 Introduction

Rigid Point Cloud Registration (PCR) is an important task in many fields, including autonomous
driving. Its goal is to estimate the relative motion between two point clouds, in 6 degrees of freedom
(x,y,z translation; pitch, roll and yaw). Recent years have seen a significant improvement in global
PCR algorithms, which can handle large relative motions. This is to a large extent thanks to deep-
learned local features. A popular and successful approach to global PCR is to divide it into two main
stages: feature matching and robust parameter estimation. In feature matching, a local descriptor
(a.k.a feature) is calculated for each point in both clouds, and then each point in the source cloud
is matched to the point in the target cloud that has the most similar descriptor to it. This results in
a set of point pair matches, from which one could estimate a 6-DOF motion. However, the set of
pairs contains many outliers, i.e. pairs whose relative motion does not follow the general motion
between the two point clouds. This can be caused by independently moving objects in the scene, e.g.
vehicles or pedestrians. It can also be caused by incorrectly matched pairs, due to various causes

1https://github.com/AmnonDrory/LidarRegistration

Machine Learning for Autonomous Driving Workshop at the 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), New Orleans, USA.

Figure 1: Challenging registration sets. The KITTI-10m registration set has been used extensively
to evaluate PCR algorithms in the automotive LiDAR setting. However, it has recently become
saturated: multiple algorithms achieve essentially perfect success. We suggest a new algorithm to
select much more challenging registration sets. To compare the sets, we present here the distribution
of test samples in KITTI-10m (bottom) and our suggested Apollo-Southbay-Balanced (top). We
show the distribution of samples by (from left to right): distance between the pair of point clouds,
time offset, overlap between scans, and rotation in three separate axes. Apollo-Southbay-Balanced
includes a balanced representation of all the relative motions that are encountered in a real driving
scenario. It is much more challenging, containing significantly larger rotations and smaller overlaps
than KITTI-10m.

including occlusions, partial overlap between point clouds, limitations of the local descriptors, and
more. To overcome outliers, it is necessary to use robust parameter estimation algorithms for the
6-DOF motion. These include explicit filtering of outliers, RANSAC, and many other approaches.

Recently, a dramatic improvement in the accuracy of PCR was achieved thanks to new, deep-learning
based, features. Fully Convolutional Geometric Features (FCGF [10]) have achieved dramatically
improved accuracy compared to classical hand-crafted features such as FPFH [26].

New robust parameter estimation algorithms for the 6-DOF motion have also been suggested re-
cently. These include DGR [8] and PointDSC [2], which are based on deep learning, and also
TEASER++ [31], which is not learning-based. These techniques have been validated mostly on
indoor scenes, showing a considerable success. When combined with weaker features (e.g. FPFH),
they show an ability to improve the results considerably. When combined with stronger features (e.g.
FCGF) they achieve state-of-the-art results.

In the automotive field, point clouds are produced by vehicle mounted LiDAR sensors, and PCR is
useful for estimating the ego-vehicular motion. There are several significant differences between
automotive LiDAR PCR and other settings (such as single object scans and indoor): the scans are
significantly larger, and often contain many distinct independent movers (vehicles, pedestrians, etc).
In recent works, testing in the automotive LiDAR setting has been done almost entirely using the
KITTI-10m registration set. This consists of pairs of frames from the KITTI Odometry dataset,
that are separated by 10 meters. As a result, it appears that its test set consists almost entirely of
high-overlap and small rotation situations. Thus, it fails to present a significant challenge to recent
PCR algorithms, as many of them are able to achieve essentially perfect recall (up to a handful of
failures at most, see Fig. 2).

In this work, we aim at thoroughly testing these new and promising PCR approaches in the automotive
LiDAR setting. Our first goal is to achieve a meaningful ranking between these algorithms. We are
interested not only in accuracy, but also in running time, which is critical for realistic applications.
To get a meaningful comparison, we need a better benchmark than the ones previously used. We
achieve this by using larger and more modern LiDAR datasets, and also by selecting a much more
challenging set of frame-pairs (see Fig. 1). We developed an algorithm that selects a set of frame
pairs that is balanced in the sense that it contains various relative motions (large and small rotations,
short and large offsets, etc), a range of overlap ratios, and a fair sampling from each of the driving

2

sequences in a given dataset. Using these challenging sets, we get an insight into questions such as
how low the overlap can get before registration results significantly deteriorate, to what extent the
local descriptors are rotation invariant, and more.

We are also interested in understanding the importance and limitations of learning-based algorithms
for PCR. Learned features have been shown to be superior to hand-crafted ones is various fields.
However, learning brings with it the issue of transferability. When we train FCGF features on a
dataset that was collected in a specific location, e.g. Boston, an important question is whether they will
also be usable in other locations, e.g. Singapore? How much of the learning is in fact memorization
of characteristics that are specific to a location?

Another question is with respect to the benefit of using deep-learning for robust parameter estimation.
Some recent deep learning based algorithms, namely DGR and PointDSC, have shown a significant
improvement for calculating the registration parameters when used with weak features. Yet, when
used with strong features that are in themselves learned (e.g. FCGF), it is less clear whether an
additional benefit is gained from these learning techniques over simpler approaches. For example,
classical RANSAC has been shown to achieve comparable accuracy to the novel algorithms. Yet, prior
works [8, 2, 31] claim that this requires significantly higher running time. Here, we suggest that this
may not be a completely fair comparison: While basic RANSAC may be slow, many improvements
have been suggested to it over the years for increasing its speed and accuracy. In this work, we
evaluate combinations of several such improvements, and end up with a variant of RANSAC that
is both more accurate and faster than the current state-of-the-art robust estimation algorithms. We
show that the accuracy of our presented framework can be further improved with an outlier filtering
method, which we propose and name Grid-Prioritized Filtering (GPF).

2 Related Work

Figure 2: Saturation of KITTI-10m. KITTI-10m
has been the standard benchmark for LiDAR reg-
istration for the last few years. It is essentially
saturated: several recent algorithms have achieved
almost perfect recall on it, failing only on a handful
of the 555 point-cloud pairs in its test set. The val-
ues shown here were taken from the corresponding
papers [8, 2, 20, 3, 18]. This saturation happens
also in other existing datasets for LiDAR registra-
tion.

Algorithms for rigid registration can roughly be
divided into local and global ones. Local regis-
tration algorithms are based on the assumption
that the motion is small. Global registration al-
gorithms aim to handle any relative motion, but
might be less accurate. Often their results are
refined by running a local registration algorithm.

Local Registration: Iterative Closest Points
(ICP) [5] is one of the earliest successful ap-
proaches to local point cloud registration, and
it remains popular to this day. The ICP algo-
rithm has been developed in various different
directions [24]. Chen and Medioni [7] replaced
the point-to-point loss function of ICP with a
point-to-plane one, by using local normals. Se-
gal et al. [28] presented the popular Generalized-
ICP (G-ICP) [28] approach, which reformulated
point-to-plane ICP in probabilistic terms and
achieved improved accuracy. Rusinkiewicz re-
cently suggested symmetric-ICP [25], which
uses a surface-to-surface distance function that
treats both point clouds symmetrically. It has
been demonstrated to be superior to G-ICP in
accuracy, and to have larger convergence basins. Drory et al. [13] presented Best-Buddies Registra-
tion, specifically BBR-F, which uses a set of mutual-nearest-neighbors in the registration to improve
accuracy.

Global Registration: A successful strategy for global registration is to generate a set of point-matches
based on local descriptors, and estimate a motion from these matches. A popular classical descriptor
is FPFH [26] which uses histograms of gradients of neighboring points.

As in other fields, learned features have been shown to be superior to hand-crafted ones [1, 27, 33, 17,
34, 21, 29, 30]. Various such descriptor have been suggested, e.g. [20, 18, 10]. Fully Convolutional

3

Geometric Features (FCGF) [10] are based on sparse convolutions over a voxelized representation of
the point cloud. The FCGF network is very fast, and produces dense features.

Robust optimization: The set of descriptor matches typically includes a significant fraction of
outliers, which must be taken into consideration when estimating the relative motion. This can be
done for example by using robust loss functions and algorithms, or by filtering the set of matches to
remove outliers [32]. RANSAC [14] is a popular method, which works by repeatedly sampling a
minimal set of point-matches, estimating a motion from the sample, and calculating its score by the
fraction of matches that agree with this motion. This is repeated until a preset number of iterations is
performed, or until early stopping occurs when the best-so-far motion has a fraction of inliers that is
sufficient (relative to a confidence value supplied by the user [4]). This simple framework has been
greatly enhanced over the years, improving RANSAC in both speed and accuracy.

PROSAC [11] performs a prioritized selection of candidate sets. It accepts the putative pairs sorted
according to a quality measure, and orders the selection of sets so that sets with higher quality pairs
are examined earlier. This simultaneously makes RANSAC faster and more accurate, by making it
more likely that a good model is found early.

LO-RANSAC [12] adds a local-optimization step: when a best-so-far model is found, its inliers
are used to find a better model, for example by performing RANSAC only on the inliers. Local
optimization can be repeated several times, as long as the best-so-far model keeps improving
significantly. Though the local-optimization step is expensive, it is only performed a few times over
the run time of the RANSAC algorithm, and so its amortized time is small. The recently proposed
GC-RANSAC [4] uses a Markov-Random Field formulation and solves it with Graph-Cuts to divide
pairs into inliers and outliers.

Another important addition to RANSAC are early rejection methods, which can be applied quickly to
reject a minimal set without going through the full scoring stage. We consider two such methods: Se-
quential Probability Ratio Test (SPRT) [23], a general domain method, and Edge-Length Consistency
(ELC) [2], which is specific to PCR.

In addition to producing local descriptors, deep-learning has also been used for robust estimation.
Deep Global Registration (DGR) [8] is based on training a second FCGF-like deep network for
the task of recognizing outliers. PointDSC [2] too is based on a second network, but not to simply
recognize outliers. Instead, it learns an embedding space where one can locate groups of mutually-
consistent pairs, that can be used to generate candidate motions. PointDSC integrated ELC into the
neural network, to encourage spatial consistency.

A novel approach that is not based on deep learning is TEASER, which is based on truncated least
squares estimation and semi-definite relaxation. TEASER++ is a faster version that is based on
Graduated Non-Convexity.

Dataset Generation. Fontana et al. [15] present a collection of datasets to be used as a benchmark
for registration algorithms, and specify the method for the creation of these datasets. Unlike them,
we focus specifically on LiDAR point cloud datasets, and registration sets that are challenging for
global registration. We adopt their idea of achieving a balanced set of relative motions by random
sampling. However, in their method a random motion is applied to an existing point cloud, thus
creating a synthetic sample. Instead, we produce natural samples by selecting a pair of point clouds
from a recorded sequence, so that their relative motion is as close to the randomly selected one as
possible.

Huang et al. [18] present the 3DLoMatch set, that contains pairs of low-overlap scans from the
3DMatch [35] dataset. They define an overlap of between 10% and 30% as low. We set the minimum-
overlap of our registration sets to 20%, which is in the same range. In line with their findings, our
experiments show that low-overlap is a strong indicator for registration failure.

3 Balanced LiDAR Registration Sets

Popular registration benchmarks for the automotive LiDAR setting have become too easy for the
newest registration algorithms (see Fig. 2). We believe the main cause for that are the simple heuristics
used for selecting frame-pairs for registration: a constant offset in space or time, which is typically
not very large (e.g. 10 meters, or 1 second).

4

Figure 3: Selection of Balanced Registration
Set. Toy example of our selection method, using
a 2DOF motion model (instead of 6DOF). Each
black point represents the relative motion between
a frame-pair. The space of all motions is normal-
ized into the unit square. Iteratively, we randomly
sample a location (green asterisk), and select one
of the frame-pairs that is close enough to this loca-
tion (within green circle).

How could we instead select a more interesting
set of frame-pairs? A naive approach would
be to enumerate all possible frame-pairs in
each driving-sequence, and then select randomly
from them. This approach has two problems:
first, many frame-pairs have no overlap, mak-
ing registration impossible. Second, and more
importantly, for a large majority of frame-pairs,
the relative motion between them is simple, e.g.
"small offset, no rotation".

We suggest a different approach: sample uni-
formly from the space of motions. We think
of the space of all relative motions as a 6-
dimensional hyper-cube, whose axes are x-
offset, y-offset, z-offset, roll, pitch and yaw. Dif-
ferent areas in this cube represent different types
of motions: small-offset with large yaw, large-
offset with small yaw but large pitch, etc. By
sampling uniformly at random from this hyper-
cube, we end up with a set of frame-pairs that is
challenging and contains representatives of all
the types of motion that appear in the LiDAR
dataset.

Generating a pool of candidates. In theory,
every pair of point-clouds from the dataset could
be considered as a candidate for the registration
set. Yet, the total number of pairs is quadratic in the size of the dataset making this impractical. To
generate a reasonably sized candidate pool, we take each kth frame in a sequence to be a source
frame. For each source frame we find the set of frames whose overlap with it is above min_overlap,
and randomly choose the target frame from this set.

Random selection of samples. We wish to select uniformly at random from the space of all
relative motions that appear in the candidate pool. We iteratively repeat the following procedure
(demonstrated in Fig. 3): First, we normalize each axis of the 6D hyper-cube separately to the range
[0,1], to overcome different ranges for different axes (x-offset, yaw, etc.). Then, we randomly generate
a location in the unit hyper-cube. If our location is farther than a radius r from any candidate, we
discard it and generate another. Otherwise, we consider the set of candidates within a radius r. They
represent essentially the same type of motion, and we choose between them according to a second
criterion: which driving sequence they come from. This allows us to encourage a fair representation
for each driving sequence in the dataset, which is important since different sequences often include
different challenges: highways vs. residential areas, daytime vs. nighttime etc.

We find it important to discard random locations that are farther than r from any candidate. Allowing
such locations to select the candidate nearest to them would have distorted the distribution of samples
that we select. For instance, candidates that lie next to a large empty region of the hyper-cube would
have a much higher probability of being selected.

Balanced registration sets. Various Automotive LiDAR datasets are available, including KITTI-
Odometry [16], NuScenes [6], Apollo-Southbay [22] and others. We use our algorithm to create
three registration sets, that we use in our experiments. The sets are built over the Apollo-Southbay
and NuScenes datasets. We divide NuScenes into two parts: Boston and Singapore. We name our
registration sets Apollo-Southbay-Balanced, NuScenes-Boston-Balanced and NuScenes-Singapore-
Balanced. We set min_overlap=0.2 and r=0.1. Our sets are considerably larger than KITTI-10m
(see Appendix A for size table). We believe this is beneficial in training, and also allows finer-grain
comparison between algorithms in testing.

In Fig. 1 we compare the distribution of samples in Apollo-Southbay-Balanced to that in KITTI-10m.
We show marginal distributions according to different parameters: time-offset, distance, overlap, roll,
yaw and pitch. In all parameters, our set includes a wider range of values than KITTI-10m. This is
especially evident for distance, which for KITTI-10m is by definition always approximately 10 meters,

5

Figure 4: Comparison of registration algo-
rithms on a balanced LiDAR dataset. We
use NuScenes-Boston-Balanced to compare
recent point-cloud registration algorithms.
All algorithms use FCGF local-descriptors
that were trained on this dataset. We show
wall-time and recall, with and without ICP
refinement. Advanced RANSAC is simul-
taneously faster and more accurate than all
other algorithms. Its two versions differ in the
pre-filtering method used; The faster one (mu-
tual) uses mutual-nearest neighbors, and the
more accurate one (GPF) uses our proposed
Grid-Prioritized Filtering.

Figure 5: The effects of cross-domain test-
ing. When FCGF features are trained us-
ing a training set which is substantially dif-
ferent from the test set, we see a drop
in accuracy. Here, the test set is from
NuScenes-Boston-Balanced, and the training
set is either from NuScenes-Boston-Balanced
(same-domain, blue), or instead from Apollo-
Southbay-Balanced (cross-domain, orange).
We see a drop in accuracy across all algo-
rithms, of approximately 16 percentage points
on average.

and in our set is a wide range, upto over 50 meters. KITTI-10m includes only high-overlap pairs,
while our dataset contains a range, actually focusing on the harder, low-overlap cases. Regarding yaw,
KITTI-10m includes only small rotations, while our dataset includes a wide range, up to 90 degree
turns and even some complete U-turns. Our dataset also contains more samples with significant roll
and pitch than KITTI-10m does.

4 Grid-Prioritized Filtering (GPF)

Pre-filtering the set of putative pair-matches, to reduce the fraction of outliers in it, is an important
step in various PCR algorithms, including RANSAC and TEASER++. Various heuristic methods
appear in the literature, including mutual-nearest neighbors (MNN, a.k.a reciprocity check), and
ratio test [19], which can be based on distances in feature space or x-y-z space. In our work we
consider registration with relatively low overlap, and we find that in this setting special care needs to
be taken to make sure that after filtering, we are still left with points that are well spread spatially. To
encourage this, we divide the point cloud into a grid (in the x-y dimension), and perform filtering
separately in each grid cell. Special care is taken to balance the number of points remaining in
each cell. We take sort the pairs in each cell according to two criteria: is/isn’t MNN, and 1st to 2nd

neighbor distance ratio. We look at distances in feature space, which makes more extensive usage of
the deep-learned features than just ascertaining nearest-neighbor pairs. We call our filtering method
Grid-Prioritized Filtering (GPF), and present its full details in Appendix B.

5 Experiments

In this section we present several experiments, comparing different registration algorithms on the
proposed LiDAR registration sets. All methods use FCGF [10] deep-features trained on these sets,
and differ in the robust estimation step. In some experiments the train-set and the test-set come
from the same LiDAR dataset (same-domain), and in others from different datasets (cross-domain).
This allows us to analyze the effect of cross-domain testing on deep feature accuracy. We compare
the following algorithms: Learned: DGR [8], PointDSC [2], algorithmic: TEASER++ [31] and
RANSAC. We tried various flavors of RANSAC (see Appendix D), and the best combination found
includes:

1. Prioritized selection of candidates (PROSAC), using the same priority order used in GPF
2. Fast-rejection by edge-length consistency (ELC)

6

Figure 6: Analysis of Failures. We show the distribution of failed samples when running RANSAC
(GPF) on the NuScenes-Boston-Balanced dataset, with ICP refinement (see Fig. 4). On the top row
we show the distribution of successful registrations (blue) and failed ones (red), according to several
parameters. On the bottom row, we show the ratio of failures for each bin in the corresponding top
row histogram. Large distance and small overlap emerge as the most influential parameters for failure.
Other parameters seem to have little influence, except in the most extreme cases.

3. Local-optimization step (LO-RANSAC), without graph-cuts

We compare two kinds of pre-filtering for RANSAC: mutual-nearest neighbors (MNN), and the novel
GPF, with a 10×10 grid. TEASER++ also requires filtering, as it tends to get stuck indefinitely when
receiving too many putative pair-matches as input. We use MNN for TEASER++ in all experiments,
and add a second filtering with GPF when testing on Apollo-Southbay-Balanced (see ahead).

For each registration task we measure the rotation error (RE) and translation error (TE), defined as

RE(R̂) = arccos
Tr(R̂TR∗)− 1

2
, (1)

TE(̂t) =
∥∥t̂− t∗

∥∥
2
. (2)

where R∗, t∗ is the ground-truth transformation. We follow [2] in defining a successful registration
as one with RE<5 degrees and TE<0.6 meters (i.e., twice the voxel-grid spacing, see ahead). As a
measure for the accuracy of an algorithm we use Recall, which is the percentage of test samples for
which registration succeeded. We report results before and after refinement, which is done with ICP
(see Appendix C for experiments with some other refinement algorithms). Further implementation
details can be found in Appendix A .

5.1 Stress-Testing LiDAR registration

In Fig. 42 we present the results of using the NuScenes-Boston-Balanced dataset to compare between
DGR, PointDSC, TEASER++, and RANSAC with two pre-filtering algorithms: MNN (with max-
iterations=1M, confidence=0.9995), and GPF(3.0) (with max-iterations=1M, and confidence=0.999).
The fastest results are achieved by RANSAC with MNN filtering. The highest accuracy is achieved
by RANSAC with GPF.

By analyzing the failures of a PCR algorithm we can achieve an insight into its limitations. In Fig. 6
we show the distribution of failures in the previous experiemnt (with RANSAC+GPF). Distribution
is according to several measures: distance between the point clouds, overlap, time offset, and three
axes of rotation. One interesting conclusion is that the algorithms are extremely rotation invariant -
the extent of rotation in the initial motion does not seem to be correlated with failure rates, except
perhaps in a very few, very extreme cases. What emerge as the most influential parameters for failure
are large distance and small overlap. Below an overlap of 0.35 we start to see a measurable increase
in the failure rate. However, even with an overlap rate as low as 0.2, most of the registration attempts
still succeed.

In Tab. 1 we look at the setting of cross-domain testing. Here, all networks (FCGF, DGR and
PointDSC) are trained on the Apollo-Southbay-Balanced dataset, but the testing is on NuScenes-
Boston-Balanced. The ordering between algorithms remains the same as in the previous experiment,
except here TEASER++ is faster than PointDSC. However, all recall values suffer a significant drop

2also see table in Appendix A

7

Table 1: Cross-Domain Evaluation

Algo. only with ICP

Recall Time(s) Recall Time(s)

DGR 44.95% 0.418 48.07% 0.462

PointDSC 63.97% 0.234 66.78% 0.293

TEASER++ 59.88% 0.146 71.99% 0.213

RANSAC (mutual) 66.94% 0.107 74.31% 0.171
RANSAC (GPF) 69.14% 0.113 77.70% 0.177

Table 2: All Registration Sets Cross-Domain
Test Train RANSAC RANSAC PointDSC TEASER++

(GPF) (mutual)

Apollo Apollo 98.97 96.97 94.02 96.65

Apollo Boston 93.84 93.25 88.53 92.62

Apollo Singapore 97.52 94.86 93.54 95.16

Boston Apollo 77.70 75.31 66.40 72.11

Boston Boston 91.13 89.39 82.37 86.88

Boston Singapore 85.61 80.79 75.39 79.63

Singapore Apollo 88.43 87.92 79.01 86.69

Singapore Boston 91.47 90.59 82.02 89.16

Singapore Singapore 94.60 93.75 90.59 93.29

in the cross-domain case. Figure 5 visualizes this drop in accuracy for the case with ICP, showing a
mean drop in recall of 16 percentage points. Cross-domain accuracies are significantly lower than
the same-domain accuracies that we have seen in Fig. 4. We believe this shows that though FCGF
features are quite transferable, some of their learning is location specific. In this experiment, we use
GPF(2.0) with max-iterations=50K, and confidence=0.999. To allow clearer comparison, we use the
same parameters also for the same-domain experiment in Fig. 5.

Table 2 presents a thorough test of our new datasets Apollo-Southbay-Balanced (Apollo), NuScenes-
Boston-Balanced (Boston) and NuScenes-Singapore-Balanced (Singapore). In each of the 9 experi-
ments, one dataset is used for training, and another for testing. We test four algorithms: PointDSC,
TEASER++, RANSAC with MNN filtering, and RANSAC with GPF. ICP is used for refinement in
all cases. The highest result in each row is in bold, the second underlined. Point clouds from the
Apollo-Southbay dataset are approximately twice as large as those from NuScenes, and this ratio is
maintained even after mutual-nearest neighbor filtering. As a result, TEASER++ tends to get stuck
often (∼15% of cases) when working on Apollo-Southbay point clouds. To overcome this, we use
two mechanisms. First, a stricter filtering than usual for TEASER++: we first filter with MNN, and
then filter with GPF, keeping a maximum of 2000 pairs. Second, we use a time-out of 10 seconds,
after which registration is marked as failed. This happens very rarely (less than 0.1% of cases). The
larger point-clouds in Apollo-Southbay also affect our settings for RANSAC+GPF. We use GPF(1.0)
when testing on Apollo-Southbay, and GPF(2.0) when testing on NuScenes. All other settings for
RANSAC are as in the previous experiment.

In all cases, we see that accuracy drops when testing cross-domain. In addition, we can see that
Apollo-Southbay-Balanced is in a sense the simplest: it achieves the highest same-domain and
cross-domain test results, but when networks are trained on it, they achieve the lowest cross-domain

8

accuracy. Training on the NuScenes-Singapore-Balanced dataset, on the other hand, leads to the
highest cross domain accuracies. As far as algorithm comparison, RANSAC (GPF) is the most
accurate, and RANSAC (mutual) the second except in one setting where TEASER++ is the second.
Both RANSAC variants are also faster than the other algorithms in all cases (see Appendix A for
running times).

6 Conclusion

We thoroughly test novel PCR algorithms on challenging benchmarks in the automotive LiDAR
setting. We find that deep-learned features such as FCGF3 suffer from partial reduction in accuracy
when tested in a locale different from the one where they were trained.

We compare various robust parameter estimation algorithms, and find that the recent deep-learning
based ones in fact do not achieve the best results. Instead, we find a variant of RANSAC which is
both faster and more accurate than all other competitors. We also suggest an outlier filtering method,
GPF, that further improves its accuracy. To improve current benchmarks, we have also introduced an
algorithm for the selection of challenging frame-pairs from automotive LiDAR datasets. We believe
it will be useful for future research, both for benchmarking PCR algorithms, and for training learned
ones.

References
[1] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Simon Lucey. Pointnetlk: Robust &

efficient point cloud registration using pointnet. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[2] Xuyang Bai, Zixin Luo, Lei Zhou, Hongkai Chen, Lei Li, Zeyu Hu, Hongbo Fu, and Chiew-Lan Tai.
Pointdsc: Robust point cloud registration using deep spatial consistency. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 15859–15869, June 2021.

[3] Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan, and Chiew-Lan Tai. D3feat: Joint learning
of dense detection and description of 3d local features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[4] Daniel Barath and Jiří Matas. Graph-cut ransac. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[5] Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239–256, Feb. 1992.

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
arXiv preprint arXiv:1903.11027, 2019.

[7] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range images. Image Vision
Comput., 10(3):145–155, Apr. 1992.

[8] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global registration. In CVPR, 2020.
[9] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski

convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3075–3084, 2019.

[10] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully convolutional geometric features. In ICCV,
2019.

[11] O. Chum and J. Matas. Matching with prosac - progressive sample consensus. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, volume 2, pages 220–226, jun 2005.

[12] Ondrej Chum, Jiri Matas, and Josef Kittler. Locally optimized ransac. In DAGM-Symposium, volume 2781
of Lecture Notes in Computer Science, pages 236–243. Springer, 2003.

[13] Amnon Drory, Tal Shomer, Shai Avidan, and Raja Giryes. Best buddies registration for point clouds. In
Proceedings of the Asian Conference on Computer Vision (ACCV), November 2020.

[14] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of The ACM, 1981.

[15] Simone Fontana, Daniele Cattaneo, Augusto L. Ballardini, Matteo Vaghi, and Domenico G. Sorrenti. A
benchmark for point clouds registration algorithms. Robotics and Autonomous Systems, 140:103734, 2021.

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

3Though our work focuses specifically on FCGF, our methods are also applicable to other types of learned
features [3, 18]

9

[17] A. Hertz, R. Hanocka, R. Giryes, and D. Cohen-Or. Pointgmm: A neural gmm network for point clouds. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12051–12060, 2020.

[18] Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas Wieser, and Konrad Schindler. Predator:
Registration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4267–4276, June 2021.

[19] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision,
60(2):91–110, Nov. 2004.

[20] Fan Lu, Guang Chen, Yinlong Liu, Lijun Zhang, Sanqing Qu, Shu Liu, and Rongqi Gu. Hregnet: A
hierarchical network for large-scale outdoor lidar point cloud registration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 16014–16023, October 2021.

[21] Weixin Lu, Guowei Wan, Yao Zhou, Xiangyu Fu, Pengfei Yuan, and Shiyu Song. Deepvcp: An end-to-end
deep neural network for point cloud registration. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), Oct 2019.

[22] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and Shiyu Song. L3-net: Towards learning based lidar
localization for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6389–6398, 2019.

[23] Jiri Matas and Ondrej Chum. Randomized RANSAC with sequential probability ratio test. In 10th IEEE
International Conference on Computer Vision (ICCV 2005), 17-20 October 2005, Beijing, China, pages
1727–1732. IEEE Computer Society, 2005.

[24] François Pomerleau, Francis Colas, and Roland Siegwart. A review of point cloud registration algorithms
for mobile robotics. now, 2015.

[25] Szymon Rusinkiewicz. A symmetric objective function for ICP. ACM Transactions on Graphics (Proc.
SIGGRAPH), 38(4), July 2019.

[26] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh) for 3d
registration. In ICRA, 2009.

[27] Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Rangaprasad Arun Srivatsan, Simon Lucey, and
Howie Choset. Pcrnet: Point cloud registration network using pointnet encoding. ArXiv, abs/1908.07906,
2019.

[28] Aleksandr Segal, Dirk Hähnel, and Sebastian Thrun. Generalized-icp. In Jeff Trinkle, Yoky Matsuoka, and
José A. Castellanos, editors, Robotics: Science and Systems. The MIT Press, 2009.

[29] Yue Wang and Justin M. Solomon. Deep closest point: Learning representations for point cloud registration.
In The IEEE International Conference on Computer Vision (ICCV), October 2019.

[30] Yue Wang and Justin M. Solomon. Prnet: Self-supervised learning for partial-to-partial registration. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada, pages 8812–8824, 2019.

[31] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast and certifiable point cloud registration. IEEE
Transactions on Robotics, 37(2):314–333, 2021.

[32] Jiaqi Yang, Ke Xian, Yang Xiao, and Zhiguo Cao. Performance evaluation of 3d correspondence grouping
algorithms. In 2017 International Conference on 3D Vision (3DV), pages 467–476, 2017.

[33] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point matching using learned features. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[34] Wentao Yuan, Benjamin Eckart, Kihwan Kim, Varun Jampani, Dieter Fox, and Jan Kautz. Deepgmr:
Learning latent gaussian mixture models for registration. In ECCV, 2020.

[35] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and Thomas Funkhouser.
3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In CVPR, 2017.

[36] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

10

Table A.1: Balanced registration set sizes

Train Validation Test

KITTI-10m 1338 200 555

NuScenes-Boston-Balanced 4032 384 2592

NuScenes-Singapore-Balanced 4032 384 2592

Apollo-Southbay-Balanced 4032 288 7008

Table A.2: Evaluation of Registration Algorithms

Algo. only with ICP

Recall Time(s) Recall Time(s)

DGR 57.91% 0.453 61.81% 0.494

PointDSC 80.56% 0.236 82.48% 0.290

TEASER++ 77.43% 0.331 86.88% 0.378

RANSAC (mutual) 84.14% 0.040 89.01% 0.099
RANSAC (GPF) 86.88% 0.199 91.90% 0.257

Appendix A Additional Experiment Details

The number of samples in each set is shown in Table A.1.

Table A.2 presents the results of the same-domain experiment in tabular form (corresponds to Fig. 4
in main article). The right side of the table shows results with ICP refinement, the left side without.
The best result in each column is in bold and the second best is underlined.

In Tab. A.3 we show the running times (in seconds) for the All-Set Cross Domain experiment
(corresponds to Tab. 2 in main paper). Fastest in each row (always RANSAC mutual) is in bold,
second fastest (always RANSAC+GPF) is underlined.

We mention in the paper that Apollo-Southbay-Balanced has larger point clouds than the other datasets
we use, and that this is also true after mutual-nearest neighbor filtering. In Tab. A.4 we show the

Table A.3: Running Times for All Registration Sets Cross-Domain Experiment
Test Train RANSAC RANSAC PointDSC TEASER++

(GPF) (mutual)

Apollo Apollo 0.326 0.292 0.691 0.781

Apollo Boston 0.336 0.330 0.725 0.354

Apollo Singapore 0.346 0.317 0.702 0.449

Boston Apollo 0.177 0.171 0.451 0.277

Boston Boston 0.157 0.098 0.432 0.486

Boston Singapore 0.177 0.124 0.437 0.477

Singapore Apollo 0.228 0.202 0.616 0.250

Singapore Boston 0.224 0.147 0.608 0.258

Singapore Singapore 0.237 0.119 0.589 0.846

11

Table A.4: Pair-Match Set Sizes

Test Train Initial MNN-filtered

Apollo Apollo 23520 2123

Apollo Boston 23520 1717

Apollo Singapore 23520 1830

Boston Apollo 8091 766

Boston Boston 8091 837

Boston Singapore 8091 841

Singapore Apollo 10335 1106

Singapore Boston 10335 1104

Singapore Singapore 10335 1198

number of putative pair-matches for different experiments, before and after mutual-nearest neighbor
(MNN) filtering. The datasets are Apollo-Southbay-Balanced (Apollo), NuScenes-Boston-Balanced
(Boston) and NuScenes-Singapore-Balanced (Singapore). The values shown are averaged over all
samples in each dataset.

A.1 Implementation Details

Calculating FCGF features requires all points to lie on a grid. Thus, we start all registration
algorithms by down-sampling with an 0.3 meter voxel-grid filter (following [10, 8, 2]). We continue
by calculating FCGF features and finding nearest-neighbors in the feature space. When reporting
running time we omit the time taken by this pre-processing.

Code4: for RANSAC we use the GC-RANSAC [4] code base, which is efficiently implemented and
offers multiple options (PROSAC, local-optimization, etc.). We added an ELC implementation based
on the one in open3d (version 0.13) [36]. We’ve also tried the open3d implementation of RANSAC
(see appendix), which offers fewer options, and is somewhat slower, though still quite fast. We run
the GC-RANSAC code with distance_ratio=0.6 and spatial_coherence_weight=0, which effectively
makes it LO-RANSAC and not GC-RANSAC. We also enable PROSAC and ELC. We set outlier
filtering parameters for each experiment separately, to demonstrate RANSAC’s ability to achieve
both the fastest and most accurate results. For ICP we use open3D, with threshold=0.6.

For DGR, PointDSC and TEASER++ we use the official implementations, with slight modifications.
We use our own implementation for training FCGF features.

The number of training epochs was selected according to preliminary tests (not shown), to a level
where further improvement is very slow. The values are: 400 epochs for FCGF, 50 for PointDSC
and 40 for DGR (whose training is considerably slower). We also changed the rotation augmentation
scheme to make more sense in the automotive LiDAR setting: instead of general rotations in all axes,
we augment with nearly-planar rotations, where yaw is in the range ±180 degrees, but pitch and roll
are only up to ±5 degrees.

We use two machines for our experiments:

A GPU: 4x Titan X, CPU: 20-core 2.20GHz Xeon E5-2630
B GPU: GTX 980 Ti, CPU: 8-core 4.00GHz i7-6700K

Most of our tests are performed on machine A, using a single GPU. TEASER++ code is run on
machine B, due to its code failing to work on machine A. To compare running time, we extrapolate
TEASER++’s presumptive running time on machine A. To do so, we calculate a normalizing ratio by

4See Appendix F for links and license information.

12

Figure B.1: Grid-Prioritized Filtering (GPF). GPF is a filtering algorithm used to select a subset of
putative point-matches that are both high-quality and maximally spatially spread. This is achieved
by dividing the source point-cloud into a grid of cells on the x-y plane, and selecting approximately
the same number of matches from each cell. In the diagram, each match is represented by a disk,
with those on the bottom, colored green, representing the ones that were selected by GPF. Within
each cell, matches are ordered bottom-to-top by their estimated quality, based on analysis of the
feature-space distance between the pair. Mutual nearest-neighbors (disks marked with small white
circles) are selected first. Then, non-mutual. The secondary criterion for prioritizing is Eq. (3) (ratio
between distance to 1st and 2nd nearest neighbor).

running RANSAC on both machines. In the appendix we analyze the differences in CPU and GPU
running times across machines.

Appendix B Detailed Description of Grid-Prioritized Filtering (GPF)

We propose the Grid-Prioritized Filtering (GPF) method to explicitly ensure spatial spread in the
selected pairs. As illustrated in Fig. B.1, GPF works by dividing the source point cloud into an
M ×M grid in the x-y plane. Then, ℓ matches are selected from each grid cell (or all matches if
there are fewer than ℓ in the cell). The priority of pairs to select follows two criteria: First, matches
that are MNNs are preferred. The secondary ordering criterion is the ratio S:

S(p) =
d(p, q2)

d(p, q1)
, (3)

where P,Q are point clouds, p ∈ P , q1, q2 ∈ Q, q1 is the nearest neighbor to p in Q , q2 is the
second-nearest, and d() is the L2 distance.

The number of pairs per cell, ℓ is determined by the total requested number, R. The simple calculation
ℓ=R/M2 is only valid when all cells contain at-least ℓ pairs. Instead, we perform a quick binary
search to find the value of ℓ that brings the overall selected number closest to R. R can be specified
explicitly, but we believe that matching it to the properties of each point-cloud is preferable. To do so,
we define it by:

R = ϕ · |N |, (4)

where N is the set of mutual nearest neighbors for each cloud, and ϕ is the user supplied GPF factor.
We use notation like GPF(2.0) to refer to running GPF with ϕ=2.0.

Appendix C Local Registration (refinement)

Balanced datasets can also be used to compare local registration algorithms, such as ICP. Such
algorithms take an initial coarse motion estimation, and refine it to achieve a high accuracy alignment.
To use them with our balanced registration sets, we supply a standard set of initial motions, produced
by performing RANSAC registration with FCGF features. These initial motions are generally
close enough to the ground truth motion to allow local registration algorithms to succees. In
Tab. C.1 we show the results of using the Apollo-Southbay-Balanced dataset, and comparing three
local registration algorithms: ICP [5], symmetric-ICP [25], and BBR-F [13]. We use the official
implementations of symmetric-ICP and BBR-F, and the open3d implementation of ICP. The point
clouds are downsampled with a voxel-grid filter with a voxel size of 0.3 meters, and we set ICP’s
threshold to 0.6 meters (as we do in all experiments, following [8]). We report Recall, as well as

13

Table C.1: Refinement Experiment

Algorithm Recall TE (cm) RE (deg)

mean 50% 95% mean 50% 95%

ICP 98.99% 80.65 11.76 30.29 0.37 0.13 0.33

BBR-F 96.33% 86.98 15.10 52.84 0.47 0.19 0.66

sym-ICP 67.74% 548.85 17.68 3544.49 2.31 0.22 10.66

Figure D.1: RANSAC Ablation: PROSAC and ELC/SPRT. We show the accuracy and running
time of different variants of RANSAC, with ICP (right) and without (left). For each setting, we repeat
the run 4 times and show the spread of results by a polygon (the convex hull). We also show their
mean. The best results are when we use both PROSAC and ELC.

translation error (TE) and rotation error (RE). We report mean, median and 95th percentile of TE and
RE, and these statistics are taken over all test samples. The results show that ICP is more accurate
than BBR-F, and both are considerably more accurate than symmetric-ICP. This differs from previous
experiments in [13] that used a subset of KITTI. We believe the central factor is overlap between
point-clouds: small overlap is common in our sets but not in KITTI. ICP explicitly filters point
pairs whose distance is above a threshold, and BBR-F uses spatial mutual-nearest neighbors. These
elements apparently gives them an edge over Symmteric-ICP in this setting.

Appendix D Ablation Studies

D.1 RANSAC

The version of RANSAC that we use in our experiments includes several improvements over classical
RANSAC:

14

Figure D.2: RANSAC Ablation: Local-Optimization. Using the same visualization as Fig. D.1, we
show LO-RANSAC is superior to GC-RANSAC in our setting.

1. Prioritized selection of candidate sets (PROSAC).
2. Quick rejection of candidate sets (with ELC).
3. Local-Optimization step (LO-RANSAC).

We perform ablation studies to show the importance of each element. We both train and test on
NuScenes-Boston-Balanced, and use the same settings as in the experiment shown in Tab. 2 of the
main paper, for the nearest-neighbor filtering case. All variants of RANSAC tested in this section
are both faster and more accurate than the other algorithms we consider in our paper: TEASER++,
PointDSC and DGR. The results of our first experiment are shown in Fig. D.1. We compare PROSAC
to random selection of candidate sets, and in the quick rejection step, we compare ELC to SPRT. To
show variance, we repeat each experiment 4 times, and plot both the mean and the convex hull of the
4 results. The results demonstrate that adding PROSAC improve accuracy but also adds to running
time, and that replacing SPRT with ELC improves both accuracy and running time.

In Fig. D.2 we show a comparison of LO-RANSAC to GC-RANSAC. In both cases we use PROSAC
and ELC, and the only difference is the parameter spatial_coherence_weight. To run LO-RANSAC
we set it to 0. To run GC-RANSAC, we set it to its default value, 0.975. LO-RANSAC achieves
higher recall than GC-RANSAC in our setting. We also tested other values of the parameter (not
shown), and the best accuracy was achieved with 0 (i.e. LO-RANSAC).

In Fig. D.3 we compare the open3d implementation of RANSAC to the GC-RANSAC implementation
which we use for most experiments (we refer to it as GC-code). The open3d implementation includes
ELC, but does not include local-optimization and PROSAC. For the fairest comparison, we run the
GC-code in a "compatible" setting, also using ELC but no local-optimization and no PROSAC. For
reference, we also run the GC-code with our default setting (ELC, PROSAC and LO-RANSAC).
Open3D is considerably slower than either GC-code setting. It is less accurate than our default setting
of GC-code, but interestingly more accurate than the "compatible" setting. Possibly, this is due
to differences in the implementation of early stopping. Open3d RANSAC is both faster and more
accurate than all other algorithms we tested, (compare Fig. D.3 here to Fig. 6 in main paper).

15

Figure D.3: RANSAC code bases: Open-3D vs. GC-RANSAC. We compare the open3d implemen-
tation of RANSAC (with ELC), to the GC-RANSAC implementation in two settings: "compatible"
which is as similar as possible to open3d, and "default" which is what we use in most of our exper-
iments. The open3d implementation is slower than the GC-RANSAC one. It also does not offer
PROSAC and LO-RANSAC, causing it to be less accurate. However, it is still faster and more
accurate than all other algorithm we tested (TEASER++, PointDSC, DGR).

D.2 GPF

In Fig. D.4 we demonstrate the effect of the number of iterations and of the GPF parameter when
running RANSAC+GPF. We can see that when adding iterations, running time always increases,
but accuracy reaches saturation and plateaus at some point. Increasing the GPF parameter ϕ, which
corresponds to keeping a larger set of point-pairs, leads to an increase in both running time and in
accuracy. However, the increase in accuracy does become considerably slower as we advance the
parameter above 3.0. In our main experiments we used the parameter values of 1.0, 2.0 and 3.0.

Appendix E GPU and CPU Running Time on Different Machines.

Some of the registration algorithms that we compare rely mostly on GPU for processing (PointDSC,
DGR), while others mostly use the CPU (TEASER++, RANSAC). Therefore, a comparison of
running times between these algorithms depends on the specific machine being used. We demonstrate
this in Tab. E.1, by running the same experiment on two machines. The machines that we use are:

A GPU: 4x Titan X, CPU: 20-core 2.20GHz Xeon E5-2630
B GPU: GTX 980 Ti, CPU: 8-core 4.00GHz i7-6700K

On either machine, we use only one GPU for testing. The experiment consists of testing PointDSC
and RANSAC on the NuScenes-Boston-Balanced dataset (training was also performed on the same
dataset). We report the running times on both machines. The ratio between the running times of
PointDSC and RANSAC is different between the machines, reflecting the different mixes of CPU

16

Figure D.4: GPF Ablation. We show the effects of different values of max-iteration (top) and of
ϕ (bottom). Increasing max-iterations improves accuracy only up to a point, after which accuracy
plateaus while running time increases. Increasing ϕ improves accuracy and increases running time,
and the plateau phenomenon is much less pronounced.

17

Table E.1: Running Times Comparison on Two Machines

Algorithm Main Machine A Machine B
Resource Time (s) Time (s)

PointDSC GPU 0.236 0.330

RANSAC CPU 0.109 0.135

Ratio PointDSC/RANSAC 2.44 2.17

and GPU capabilities in each machine. For this experiment, we used the open3D implementation of
RANSAC.

Appendix F Code Bases

In our work we make use the following code bases: FCGF [10]: https://github.com/
chrischoy/FCGF (MIT License)

DGR [8]: https://github.com/chrischoy/DeepGlobalRegistration (MIT License)

Minkowski Engine [9]: https://github.com/NVIDIA/MinkowskiEngine (MIT License)

PointDSC [2]: https://github.com/XuyangBai/PointDSC

TEASER++ [31]: https://github.com/MIT-SPARK/TEASER-plusplus (MIT License)

Open3d [36]: https://github.com/isl-org/Open3D (MIT License)

GC-RANSAC [4]: https://github.com/danini/graph-cut-ransac (new BSD License)

Symmetric-ICP [25]: https://gfx.cs.princeton.edu/proj/trimesh2/ (GPL Version 2 Li-
cense)

Best-Buddies Registration [13]: https://github.com/AmnonDrory/
BestBuddiesRegistration

18

